OPEN ACCESS

ORIGNAL ARTICLE

STUNTING AND ITS ASSOCIATED FACTORS IN SCHOOL-AGE CHILDREN OF WAH CANTONMENT, PAKISTAN.

Sohail Ashraf¹, Saleh Ahmed², Saba Mushtaq³, Muhammad Ahmad Mughal⁴, Khola Waheed Khan⁵, Rabia Rehman⁶

ABSTRACT

BACKGROUND: Stunting is used as one of the indicators of malnutrition in children. Children are considered stunted if their height-for-age is less than two standard deviations of the World Health Organization (WHO) Child Growth Standards median. Data related to stunting in older children is scanty so this study was planned. OBJECTIVE: To determine the frequency of stunting in schoolgoing children of Wah Cantonment and its association with their gender and type of school. METHODOLOGY: The study was conducted using a cross-sectional design among primary and middle schools in Wah Cantonment, Pakistan, belonging to both the public and private sectors from August 2024 to October 2024, using a convenient sampling technique. Data was collected using a structured questionnaire and was analysed using SPSS version 25. **RESULTS:** 11.6% of the children were found to be stunted. Out of 60 children with stunting, 27 were males and 33 were females (pvalue=0.27). 61.7% of these stunted children were found to be enrolled in public sector schools (pvalue=0.02). **CONCLUSION:** The frequency of stunting was relatively lower than in other regions of Pakistan. There was no difference in stunting across genders. The majority of the children with stunting were enrolled in public sector schools, highlighting the need for targeted interventions in public schools to reduce stunting.

KEYWORDS: Child malnutrition, Gender bias, Literacy, Public sector, School-age population, Stunting

- 1. Professor, Department of Paediatrics, Wah Medical College, National University of Medical Sciences, Rawalpindi.
- 2. Assistant Professor, Department of Community Medicine, School of Medicine, Dentistry and Allied Sciences, PAF-IAST, Haripur.
- 3. Associate Professor, Department of Paediatrics, Wah Medical College, National University of Medical Sciences, Rawalpindi.
- 4. Lecturer, Department of Community Medicine, Wah Medical College, National University of Medical Sciences, Rawalpindi.
- 5. Associate Professor, Department of Community Medicine, Wah Medical College, National University of Medical Sciences, Rawalpindi.
- 6. Resident, Department of Paediatrics, Wah Medical College, National University of Medical Sciences, Rawalpindi.

Corresponding Author: Sohail Ashraf, Professor, Department of Paediatrics, Wah Medical College, National University of Medical Sciences, Rawalpindi. Email: Sohailaa2000@yahoo.com

How to Cite This Article: Ashraf S¹, Ahmed S², Mushtaq S³, Mughal MA⁴, Khan KW⁵, Rehman R⁶ STUNTING AND ITS ASSOCIATED FACTORS IN SCHOOL-AGE CHILDREN OF WAH CANTONMENT, PAKISTAN. J Peop Univ Med Health Sci. 2025:15(3), 36-43. http://doi.org/10.46536/jpumhs/2025/15.03.656

Received On 29 May 2025, Accepted On 15 September 2025, Published On 25 September 2025.

INTRODUCTION

Stunting is used as one of the indicators of malnutrition in children. Children are Considered stunted if their height-for-age is less than two standard deviations of the

World Health Organization (WHO) Child Growth Standards median.² Children with stunting exhibit delayed growth and developmental delays as a result of nutritional deficiencies, frequent illnesses, and a lack of cognitive stimulation, so stunting in children is regarded as a major public health issue.³ The global prevalence of stunting recorded in 2022 was 22.3%, so a target was set to reduce it to 13.5% by 2030. Due to the efforts of international organisations like the Food Agriculture Organization (FAO), United Nations Children's Fund (UNICEF), and WHO, a steady decline in stunting is observed.4

According to a global study conducted in 2023 among low-middle-income countries, 32% of the children were found to be stunted.⁵ According to recent estimates, the prevalence of childhood stunting has reduced from 34.7% to 21.2% in the Eastern Mediterranean region over the last two decades.⁶ In Pakistan, the current prevalence of stunting is around 40%, and it is targeted to be reduced to 25.5% by $2025.^{6,7}$ Understanding the factors associated with stunting is very important to achieve this target. Stunting and malnutrition have been linked to the consumption of low-quality and quantity food, increased food insecurity, and increased rates of infections. In Pakistan, the floods of 2022 further aggravated the situation, especially in areas that were heavily hit by flooding, as access to necessities like safe drinking water and healthcare was severely hampered.^{8,9}

The literature was mainly focused on malnutrition in children under five, and global targets were also set, considering this particular age group. According to WHO, a child is defined as an individual under eighteen years of age, so stunting should also be assessed among children of school-going age. Stunting in preschool has been studied quite extensively, but literature on school-age children is scanty. On a global level, studies were found, which were conducted among school-age

children in Ethiopia, India, Peru, and Vietnam majorly. 2,10,11 On the national level, stunting and its associated factors were studied across different districts of Punjab in 2015, then among the children of Multan and then in the flood-affected districts of KPK. 12-14 As a result, studies evaluating regional differences in the occurrence of stunting are limited for older children. Our study will attempt to determine the frequency of stunting in school-going children of Wah Cantonment to address this gap in data related to stunting, especially among school-age children, and in order to determine factors associated with stunting in school-age children, the association of gender and type of school will also be assessed.

MATERAIL AND METHODS

The study was conducted using a cross-sectional design among primary and middle schools in Wah Cantonment, Pakistan, belonging to both the public and private sectors from August 2024 to October 2024.

School-going children of both sexes from the ages 6 to 12 years, 13 enrolled in primary and middle schools of Wah Cantonment were included in the study using a convenient sampling technique. Children with any inherited genetic disease or any autoimmune disease were excluded from the study. 15

The minimum sample size required to conduct this study was calculated using the sample size calculation formula for prevalence studies considering P= 0.405¹³ and the margin of error to be 5%. It was calculated to be 372. We included 519 children in our study as their parents consented to their inclusion in the study during the phase of data collection voluntarily.

$$N = Z^{2}P (1-P) / e^{2}$$

$$N = (1.96)^{2} \times 0.405 (1-0.405) / (0.05)^{2}$$

$$N = 372$$

Where Z = Value for 95% confidence interval, e = Alpha error, P = Prevalence

For conducting the study, ethical approval was granted by the Institutional Review Board of Wah Medical College, Wah Cantt, vide letter no. WMC/ERC/IRB/047 dated 27th May, 2024. After getting ethical approval, four schools from the public and private sector each were short-listed based on convenience of approach. Permission acquired from Federal was Educational Institutes Directorate, Wah Cantt and from the four private school administrations for data collection. After making a prior appointment, two members of the research team visited the schools every week during the phase of data collection. The consent forms were sent to the respective schools for prior permission from the parents. The children were enrolled in the study only after obtaining written informed consent from their parents.

A structured proforma was used to collect data regarding age (years), gender, type of school (public/private sector), height (cm), and nutritional status (normal/stunted). The child's name and father's name were also recorded but only for the purpose of identification. The height of the children measured using wall-mounted stadiometers ¹⁶. The age of the students was verified from the school record. The measured height (cm) and the recorded age (years) were plotted on the gender-specific "WHO z-score height-for-age charts (5-19 years)" for each child, which is available **Tables**

on the official WHO website.¹⁷ The children with height-for-age less than two standard deviations of the WHO Child Growth Standards median were categorised as stunted.¹⁸

Data was analysed using SPSS version 25. For the age and height of the children, the median and IQR were calculated. Frequencies and percentages for the variables of gender, type of school and nutritional status of the children were calculated. The Chi-square test was used to establish the association of gender and type of school with the nutritional status of the children. A p-value < 0.05 was considered as significant.

RESULTS

The study included 519 children from Wah Cantonment, with a median age of 9.3 (4) years. The median height of the students was reported to be 132 (22.1) cm, as shown in Table I. The majority of the enrolled students were male (51.6%). Most of the participating students were enrolled in private sector schools (52.2%), as shown in Table II.

It was found that 11.6% (60 out of 519) of the children were found to be stunted. Out of 60 children with stunting, 27 were males and 33 were females (p-value=0.27) (Fig. I) and out of them, 61.7% were found to be enrolled in public sector schools (p-value=0.02) (Table III).

Table I. Descriptive statistics of age and height of the students (N=519)

Variable	Minimum value	Maximum Value	Median (IQR)
Age (years)	6	12	9.30 (4.0)
Height (cm)	96	186	132 (22.1)

Table II. Descriptive statistics of gender of students and their type of schools (N=519)

Variable	Frequency	Percentage	
Gender			
Male	268	51.6	
Female	251	48.4	
School Type			
Public Sector	246	47.4	
Private Sector	273	52.6	

Status	School types	p-value*		
	Public	Private	Total	
Stunted	37 (61.7)	23 (38.3)	60	0.02
Not-stunted	211(45.9)	248 (54.1)	459	

^{*} Chi-square test

FIGURE

Figure I. Distribution of stunting across Gender (Chi-square test p-value=0.27)

DISCUSSION

This research was conducted to determine the frequency of stunting and associated factors among school-going children in Wah Cantt. Pakistan. The results showed that 11.6% of the children were found to be stunted. There was no difference in stunting across genders. The majority of the children with stunting were found to be attending public-sector schools. Stunting was shown to be prevalent in 23% of school-aged children in Pakistan, according to a recent systematic review.¹⁹ Although the prevalence of stunting among school-going children in Wah Cantonment is lower than in other regions of Pakistan, it still underscores a notable public health issue, as stunting is frequently linked to chronic malnutrition, potentially affecting both cognitive and physical growth in the long run. This can result in the use of health resources, as stunting may contribute to chronic diseases and a compromised immune system, increasing a child's susceptibility to infections, as well as hindering growth and

development.²⁰ This phenomenon may yield significant economic consequences, particularly in developing nations like Pakistan. Over time, this may lead to higher healthcare expenses and decreased workforce efficiency and overall productivity.²¹

A number of studies have been carried out globally to investigate the prevalence of stunting. In developed nations such as China. America, and the UK. occurrence of stunting is less common compared to developing countries like India, Pakistan, Bangladesh, and Ethiopia, where it is more prevalent.²² With 57% of cases, Ethiopia had the highest stunting among school-age children. These data suggest that equity in resource distribution, position. improved socioeconomic adequate nutrition, high literacy rates, and superior healthcare services constitute key predictors of stunting.

In our study, there was no significant difference in the prevalence of stunting among boys and girls. This finding

contradicts Pakistan's cultural trends as the household resource allocation mostly favours the male child as they are considered inheritors of wealth.²⁴ This was noted in another study in the Punjab province of Pakistan, where females under five children were found to be at more risk of stunting due to gender-biased resource allocation of households. ²⁵. Another study conducted among children and adolescents in Sindh reported that 37% of females were stunted, as compared to 27% of males.²⁶. The results of our study highlight the significance of education in relation to stunting, as the literacy rate in Wah Cantt is 100%.²⁷ Consequently, education is crucial in mitigating stunting, especially in lower middle-income nations. The solution to the issue of gender disparities is enhanced literacy and the empowerment of women. A countrywide survey in Pakistan utilising household data indicated that women's empowerment correlated with reduced stunting rates among young children, with consistent results across provincial regions.²⁸

Interestingly, our study found that stunting was more prevalent among children attending public sector schools. This is consistent with findings from other regions. The prevalence of stunting was found to be much greater among students enrolled in public schools in the Hohoe Municipality of Ghana (12%) compared to those enrolled in private schools (3%).²⁹ Another study conducted in Faisalabad pointed out that around 71.6% of the stunted children included in the study were enrolled in public sector schools.³⁰ This disparity can be attributed to differences in socioeconomic status, access to nutritional resources, and overall living conditions. This is reflected in another study when it was found that in Multan District, the frequency of stunting among children living in rural areas was higher compared to the children living in urban society, with of 58.7 and percentages 41.3, respectively.31

Inadequate funding, a lack of access to balanced nutrition, and limited health services are all factors that public schools may face, which can lead to higher stunting rates. In contrast, private schools often have better resources and support systems, which can help mitigate the risks of malnutrition. Our results highlight the need for public school-based targeted interventions to reduce stunting. These interventions should aim to improve children's nutritional programs, health education, and healthcare access. By doing so, we can promote healthy growth and development in children, improving their educational outcomes and overall quality of life.

Stunting can be prevented through the implementation of various effective strategies. To prevent stunting in schoolaged children in various regions of India and Bangladesh, food supplements were introduced in schools. This initiative is commendable, as it fosters the health and growth of children, thereby effectively preventing stunting. 32,33 Additionally, it is imperative to identify high-risk areas and allocate resources to them in order to prevent stunting and enhance the overall outcome. Resolving cultural norms is necessary, as females should receive the same nutrition as boys. This can be achieved by promoting education in regions where discrimination is prevalent. These measures would have a beneficial effect on the general welfare of children, which in turn would stimulate economic growth.

The intricacy of addressing stunting is underscored by the diverse findings concerning gender disparities and the distinction between public and private school students. These distinctions highlight the necessity of customised interventions to account for the unique environments of various educational systems and gender-specific challenges. Developing effective strategies to combat stunting and improve health is contingent upon understanding these dynamics.

Our study has some limitations. We used a non-random sampling technique and selected eight schools at our ease due to resource constraints. This will affect the generalizability of our findings. In this regard, a study involving more schools in the area and using a random type of sampling technique can further improve the results.

CONCLUSION

11.6% of the children were found to be stunted in Wah Cantonment. There was no difference in stunting across genders. The majority of the children with stunting were enrolled in public sector schools. highlighting the need for targeted interventions in public schools to reduce stunting.

ETHICS APPROVAL: The ERC gave ethical review approval.WMC/ERC/IRB/047 DATED 27TH MAY 2024.

CONSENT TO PARTICIPATE: written and verbal consent was taken from subjects and next of kin.

FUNDING: The work was not financially supported by any organization. The entire expense was taken by the authors. **ACKNOWLEDGEMENTS:** We are thankful to all who were involved in our study. The author aknowledges that they have not used AI for linguistic and editorial assistance.

AUTHORS' CONTRIBUTIONS: All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated in the work to take public responsibility of this manuscript. All authors read and approved the final manuscript.

CONFLICT OF INTEREST: No competing interest declared.

REFERENCES

- 1. Roba AA, Assefa N, Dessie Y, Tolera A, Teji K, Elena H, et al. Prevalence and determinants of concurrent wasting and stunting and other indicators of malnutrition among children 6–59 months old in Kersa, Ethiopia. Matern Child Nutr. 2021;17(3):1–12.
- 2. Wake SK, Zewotir T, Lulu K, Fissuh YH. Longitudinal trends and determinants of

- stunting among children aged 1–15 years. Arch Public Health. 2023;81(1):1–12.
- 3. Scheffler C, Hermanussen M, Bogin B, Liana DS, Taolin F, Cempaka PMVP, et al. Stunting is not a synonym of malnutrition. Eur J Clin Nutr. 2019;74(3):377–86.
- 4. FAO, IFAD, UNICEF WFP and WHO. The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural—urban continuum Internet: Food and Agriculture Organization; 2023 Jul cited 2024 Dec 7. Available from: https://www.fao.org/documents/card/en/c/cc3017en
- Karlsson O, Kim R, Moloney GM, Hasman A, Subramanian S V. Patterns in child stunting by age: A cross-sectional study of 94 low-and middle-income countries. Mater Child Nutr. 2023;19(4):e13537
- 6. Nikooyeh B, Ghodsi D, Amini M, Rasekhi H, Rabiei S, Doustmohammadian A, et al. The Analysis of Trends of Preschool Child Stunting, Wasting and Overweight in the Eastern Mediterranean Region: Still More Effort Needed to Reach Global Targets 2025. J Trop Pediatr. 2022;68(3):1–11.
- 7. Soofi SB, Khan A, Kureishy S, Hussain I, Habib MA, Umer M, et al. Determinants of Stunting among Children under Five in Pakistan. Nutrients. 2023;15(15):1–11.
- 8. Integrated Food Security Phase Classification. IPC Acute Malnutrition Analysis Internet. ipcinfo.org. 2023 cited 2024 Dec 8. Available from: http://www.ipcinfo.org/ipc-country-analysis/
- 9. Singh JA, Siddiqi M, Parameshwar P, Chandra-Mouli V. World Health Organization Guidance on Ethical Considerations in Planning and Reviewing Research Studies on Sexual and Reproductive Health in Adolescents. J Adolesc Health. 2019. 64(4):427–9.
- 10. Berhanu A, Garoma S, Arero G, Mosisa G. Stunting and associated factors among school-age children (5–14 years) in Mulo district, Oromia region, Ethiopia. SAGE Open Med. 2022;10.
- 11. Lisanu Mazengia A, Andargie Biks G. Predictors of stunting among school-age children in Northwestern Ethiopia. J Nutr Metab. 2018;2018.

- 12. Asif M, Aslam M, Mazhar I, Ali H, Ismail T, Matłosz P, et al. Establishing Heightfor-Age Z-Score Growth Reference Curves and Stunting Prevalence in Children and Adolescents in Pakistan. Int J Environ Res Public Health. 2022;19(19).
- 13. Haq IU, Mehmood Z, Afzal T, Khan N, Ahmed B, Nawsherwan, et al. Prevalence and determinants of stunting among preschool and school-going children in the flood-affected areas of Pakistan. Braz J Biol. 2021;82:e249971.
- 14. Qaisar R, Karim A. A comparison of international and national references to measure the prevalence of stunting in Pakistani school-age girls. Sci Rep. 2022;12(1):1–8.
- 15. Aurora WID. Academic Outcomes in School-Age Children with Stunting and Non-Stunting. Adv Eng Res. 2021;205:83–6.
- Khan K, Khanzada S, Qazi WA, Khalid S, Mawani A, Khalid F. Anthropometric Measurement of Primary School Going Children in Pakistan. Int J Physiother. 2016;3(2):214–7.
- 17. World Health Organization. Growth reference 5-19 years. 2017 cited 2024 Dec 30. Height-for-age (5-19 years). Available from: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/height-for-age
- 18. World Health Organization. Stunting in a nutshell 2015 cited 2024 Dec 29. Available from: https://www.who.int/news/item/19-11-2015-stunting-in-a-nutshell
- 19. Khan DS, Das JK, Zareen S, Lassi ZS, Salman A, Raashid M, et al. Nutritional Status and Dietary Intake of School-Age Children and Early Adolescents: Systematic Review in a Developing Country and Lessons for the Global Perspective. Front Nutr. 2022;8:e739447
- 20. Morales F, Montserrat-de la Paz S, Leon MJ, Rivero-Pino F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children's Health Status: A Literature Review. Nutrients 2024:16(1):1.
- 21. Hyder Z, Ersado L. World Bank; End Poverty in South Asia. 2023 cited 2024 Oct 21. Addressing Pakistan's high level of stunting, now! Available from:

- https://blogs.worldbank.org/en/endpoverty insouthasia/addressing-pakistans-highlevel-stunting-now
- 22. Kinyoki DK, Osgood-Zimmerman AE, Pickering BV., Schaeffer LE, Marczak LB, Lazzar-Atwood A, et al. Mapping child growth failure across low- and middle-income countries. Nature. 2020;577(7789):231–4.
- 23. Bogale TY, Bala ET, Tadesse M, Asamoah BO. Prevalence and associated factors for stunting among 6-12 years old school age children from rural community of Humbo district, Southern Ethiopia. BMC Public Health. 2018;18(1):1–8.
- 24. Raza SH, Shah ZA, Haq W. Role of birth order, gender, and region in educational attainment in Pakistan. Sci Rep. 2022;12(1):e11842.
- 25. Mahmood T, Abbas F, Kumar R, Somrongthong R. Why under five children are stunted in Pakistan? A multilevel analysis of Punjab Multiple indicator Cluster Survey (MICS-2014). BMC Public Health Internet. 2020;20(1):1–15.
- Campisi SC, Humayun KN, Wasan Y, Soofi SB, Islam M, Hussain A, et al. The relationship between pubertal timing and under-nutrition in rural Pakistan. J Adolesc Health. 2021;88(1):58–66.
- 27. FGEI. Government of Pakistan. 2023 cited 2024 Oct 22. Federal Government Education Institutions (C/G). Available from: https://fgei9.pitb.gov.pk/wah
- 28. Khalid H, Martin EG. Female-Headed Households Associated with Lower Childhood Stunting Across Culturally Diverse Regions of Pakistan: Results from a Cross-Sectional Household Survey. Matern Child Health J. 2017;21(10):1967–84.
- 29. Agbozo F, Atito P, Abubakari A. Malnutrition and associated factors in children: A comparative study between public and private schools in Hohoe Municipality, Ghana. BMC Nutr. 2016;2(1):1–10.
- 30. Zahid S, Masood Z, Fayyaz R, Itrat N, Hussain SJ. Assessment Of Nutritional Status of School Children in Public and Private Sector Schools by Anthropometry. J Uni Med Dent Coll. 2017;8(4):52–26.
- 31. Ponum M, Khan S, Hasan O, Mahmood MT, Abbas A, Iftikhar M, et al. Stunting diagnostic and awareness: Impact

- assessment study of sociodemographic factors of stunting among school-going children of Pakistan. BMC Pediatr. 2020;20(1):1–9.
- 32. Gharge S, Vlachopoulos D, Skinner AM, Williams CA, Iniesta RR, Unisa S. The effect of the Mid-Day Meal programme on the longitudinal physical growth from childhood to adolescence in India. PLOS Global Public Health. 2024;4(1):1–16.
- 33. Rahman MM, Rashid M, Mondol LS, Khan MA, Nur L, Hossain M, et al. Nutritional Status of Primary School Children with Mid-Day Meal Program. Proceedings of the International Conference on Public Health Internet. 2021 Feb 15 cited 2024 Oct 21;6(1):32–6. Available from: https://tiikmpublishing.com/proceedings/index.php/icoph/article/view/760